

Breaking the Software Development Roadblock:
Continuous Software Enhancement By Design Maintenance

 Ira D. Baxter

Semantic Designs, Inc.
www.semdesigns.com

idbaxter@semdesigns.com

Abstract

The software development paradigm propounded by Semantic Designs, Inc. envisions a design-centric perspective rather
than today’s all too prevalent code-centric viewpoint. The Design Maintenance vision mandates notions of design and
designing that are both formal and practicable. Our notion of a formal design entails three interrelated parts: specification (the
artifact’s functionality and performance goals); realization (including architectural design choices and ultimately, code); and
rationale (justifying the realization of the specification). By practicable, we mean that each of the three parts of our formal
notion of design are: 1) manipulable by both machine and software engineer; 2) scaleable for real, industrial-size systems
(10’s of MSLOC); 3) able to accommodate systems that are realized using multiple domain specific languages (ranging from
high-level specification languages to implementations comprised of multiple target-execution languages); and 4) capable of
continuous, incremental enhancement and extension.
The implementation of this vision is called the Design Maintenance System™ or DMS™. The current release is DMS 1.0
Reengineering Toolkit, which provides infrastructure for Domain Specific Language (DSL) engineering as well as language
neutral components that enable construction of large-scale, mixed-language specification analysis, transformation and
synthesis tools. Original research and development for DMS was funded by an award from the Department of Commerce,
NIST ATP under the Component-Based Software Initiative (NIST Cooperative Agreement Number 70NANB5H1165).
The Design Maintenance vision and DMS together form the basis for our full, frontal assault on software engineering’s
challenging areas of “New Software Development Paradigms” and “Software for the Real World”. We claim the Design
Maintenance vision and DMS together provide a solid foundation for building a formal, repeatable software engineering
discipline and practice. In a DMS-based environment, hard won software engineering synthesis knowledge is made reusable
through the incremental accretion of an ever-increasing repository of domain-specific transformations and domain-specific
languages. Thus, software engineers reusing such knowledge become more effective in that the artifacts are produced using
tested language definitions and transformations. Maintenance productivity will be enhanced as well, since the full-fledged
implementation of DMS will support incremental, continuous design modification by capturing and preserving instances of
the DMS notion of design—specifications, realizations, rationales. Moreover the leverage afforded by DMS in the
identification and disposition of design changes on industrial scale designs promise to yield a 50% reduction in change cycle
time while eliminating the software error re -injection rate—“collateral damage” or unintentional consequences of change
installation. However, critical technical barriers must be surmounted on the path to achieving these productivity and quality
breakthroughs. Some of these barriers include: scalable design capture capabilities; semantic reasoning across DSL
boundaries; specification of and reasoning about performance-related aspects for a software artifact.

Keywords

Software Engineering, Design, Maintenance, Program Transformation

1 Design must be the Key Engineering Product

Traditional software construction methods suffer from
high development and maintenance costs as well as long
delays. The resulting products often have a large number
of errors, and are difficult to adapt to change over their
lifespan. The fundamental cause of these problems is the
loss of mechanically-processable design information about
the software, from its specifications, to its architecture,
algorithms and implementation, especially including
rationale as to why the software is structured/implemented
the way it is. Without such design information, software
engineers are doomed to waste considerable time re-
inventing poor approximations of the true design, and
consequently organizations repeatedly pay high
(re)engineering costs and compound implementation errors.

Retaining design information by informal means such
as documents or human-based system expertise does not
allow fast or reliable transfer of that information to other
engineering agents or automated tools. The solution to this
is to mechanically capture and store system design
information as designers work. To ensure that the design is
accurate, the resulting system must be derived from the
design, rather than informally coding from a design and
later attempting to reconcile the as-implemented code with
the proposed design. Capturing such design information in
a mechanically processable form enables automation to be
used during design and implementation, bringing the
productivity of computing to the software engineering
process.

Automated processing of design knowledge falls in two
categories: analysis of a design, to identify consequences,
strengths and weaknesses, and semi-automated code
generation, to provide accelerated means for reliable
implementation. Domain specific program transformation
systems are a maturing technology that can provide a
significant amount the necessary automation.

Finally, the engineering process must be viewed as
continuous product enhancement by incremental design
maintenance. Even “new” systems are designed and
implemented incrementally over time. This paper offers a
vision of Design Maintenance, sketched originally in
[2,3,5], and outlines DMS, a tool under construction, which
is intended to lead, in the long term, to a realization of the
vision.

2 What is a Design?
The idea of capturing “designs” is certainly not new,

and a plethora of CASE methodologies and tools have been
proposed, implemented and used in the past. We contend
that their payoff would have been much greater with a
commitment to a precise definition of design. The failing
of many CASE tools is caused by commitment to

extremely weak notions of design.

The value of design information is in the set of
questions it can potentially answer about the designed
artifact. We argue that a good definition of design must
provide sufficient information to, in principle, answer all
possible questions about the designed product, including
What, How, and Why:

• What is the specification for the software, both:
o functionality and
o performance (e.g., constraints concerning

environment, capacity, responsiveness,
etc.)

• How the software is realized
o “architectural” design choices

o final code

• Why the realization meets the specification
Finally, such design information must be extensible thus
admitting to answering new classes of questions as
software engineering research and practice is able to
formulate them. Each of the following subsections
elaborates these components a design.

2.1 Domain-oriented Specifications
The first component of a design is the specification of

the software constructed. This answers the fundamental
question of “What should the software do, and how well
should it do it?” Such specifications must be formal, so
that there can be no question about intent. They must also
be complete; “specifications” which elide some desired
behavior are not specifications, but merely projections of
the intent. One cannot implement a perspective. We insist
that a good design representation be able to specify the
required functionality and performance completely, without
over committing, to leave maximal room for
implementation choices.

This opens the question of which single specific
formalism should one choose for specification. A standard
response to this question from much of the formal methods
community is some variation of a mathematically based
system involving quantifiers, sets, and relations (such a Z),
on the grounds that all computations can in principle be
expressed in this way. We hold that the question is
malformed as it is predicated on the assumption that there
can be a one-size-fits-all formalism.

Instead, we suggest that a software system specification
should use multiple, domain-specific languages (DSLs)
appropriate to the task at hand.1 Using a DSL offers

1 We observe that this idea already actually appears in the
implementation of practically every software system of any

brevity and clarity, by using the vocabulary of the problem
domain. The practical utility of individual DSLs is shown
by their variety [10]. DSLs enable specifications to be
more easily encoded and reviewed, minimizing errors in
encoding requirements. Since fixing requirements errors
cost 10-100 times the cost of fixing coding errors, it makes
sense to maximize the clarity of the actual system
specification.

Each DSL must have a formal meaning. This is a
necessity if there is to ever be any mechanical tool support,
and if the “intuitive” meaning of the DSL, evident to the
designer, is to make any sense. That formality may itself
be expressed in terms of underlying but more abstract
DSLs, finally grounding in algebras, the lambda calculus,
or models. These underlying DSLs can provide the means
for a mechanical system to reason about the user-level
DSLs.

Complex software systems must almost always handle
complex situations, which is unlikely to be covered by a
single DSL. By using multiple DSLs, each appropriate to a
particular aspect of the problem, one can express the
overall functionality. For example, one could express a
problem involving the specification of discrete control for
factory automation in terms of hierarchical, Colored Petri
nets [8] propagating values whose arithmetic is defined by
multiple algebras (e.g., Boolean, Integer, and Time).

Use of multiple DSLs enables us to express the
functionality with one set of DSLs, and the performance
properties of the system using another set of DSLs. This
could enable us to express performance of algorithms using
a DSL for computational complexity, and performance
specifications for storage in terms of a temporal calculus
describing an eventual steady state. As other definitions of
performance arise, appropriate DSLs can be designed for
their specification. Performance DSLs are useful when
there is a partial ordering over performance expressions, as
this allows the comparison and selection of “better”
performing implementations [2].

Finally, use of multiple DSLs is robust in the face of the
impossibility of having the all-encompassing wide-
spectrum language already designed in advance and
suitable for every possible application. We can always fall
back on whichever (or even many) of the mathematical
specification languages seems best, as just another DSL.

A significant research challenge for this approach is the
requirement to define the formal meaning of composite
specifications coded in multiple DSLs. It requires that

scale. Typical examples include COBOL plus SQL, C++
and IDL. We see this at the specification level in UML
with OCL, etc.

composing DSLs mu st also have a formal meaning [9]
(including formally defining certain compositions as
nonsense). We hold that the expression and meaning of
such compositions is itself a kind of DSL. The
mathematical machinery for defining relations and
therefore, compositions between the formal meanings of
problem domains is beginning to appear in research on
semantics with one promising area of inquiry being
institution morphisms [12].

2.2 Software Realization
The second component of software design is its

realization, both in the concrete (i.e., the “executable
source code”) and in the abstract (how the software is
mapped from specification into code). This answers the
question, “How is the software implemented to achieve
correct functionality and satisfactory performance with
respect to the specification?”

Realizations are recursive decompositions of subsets of
the functionality specification, in terms of lower-level
specifications and functionality, usually in mixed target
execution languages —“DSLs” such as C++, Prolog,
HTML and Verilog. Consider again the example for
factory automation. Places in the Colored Petri Net
specification are realized by abstract sets of algebraic
values, which in turn are realized by C++ arrays of structs
representing individual values. Transitions in the Colored
Petri Net are realized by predicate-triggered atomic
transactions inspecting transition input states, and updating
output states; the atomic transactions are realized in turn by
state-update-calls to interrupt-disabled C++ code to move
values from input place arrays to output place arrays,
performing combinational arithmetic along the way.

The actual realization of a specification fragment in
terms of lower level constructs is a design choice. This
design choice would be recorded explicitly in the design.
Such a record is fundamental to enable subsequent
incremental design modification. As well it provides bi-
directional traceability between the motivating
specification fragment and its realization. This traceability
will also allow later revalidating the design choice as
legitimate if necessary, by informal inspection by other
software engineers, or by automated proof based on the
semantics of the specification fragments being realized, and
the realizing implementation fragments. We remark that
other design choices are typically possible and latent in the
specification. The potential for other design choices
enables redesign of the software during later maintenance.

The realization may be as complete as the stage of the
implementation permits, from empty (no design work has
been done) to fully realized as source code. Realization
parts may be more or less complete than other parts. This

allows an engineer to operate on any part of the design,
either to extend it in detail towards an implementation, or
to retract implementation steps, abstracting a portion of the
software to be re-implemented with another technology [1].
Of course, a completed design has “code” components at
all “leaves”, and may thus be compiled to an executable
system.

The part of the realization closer to the specification,
that shows how the code is structured at a high level, would
be generally termed architecture of the code. We view
architecture as more fluid than others might; it is necessary
to explain the structure of the code, but is itself just a
consequence of higher-level design decisions that chose
that architecture rather than some other2.

2.3 Rationale for Realization

The third fundamental component of a design is the
rationale justifying each design decision. The rationale
explains, explicitly or implicitly, why the realization is
correct from both functionality and performance points of
view.

The correctness of the functionality relation between
the specification and the implementation fragments can be
validated by theorem proving over the semantics of both.
This would be an implicit rationale. Actually carrying out
the theorem-proving step would constitute “recovering” the
justification, and can be arbitrarily expensive and therefore
should be avoided.3 An indirect but explicit validation
would refer to an already-proven theorem about the
relationship of an abstraction of the specification fragments
and of the realization. Such a theorem implicitly
constitutes a correctness-preserving program
transformation, and we can store the program
transformation in a library to act as the validation [2,3].
The notion of a transformation as a representation for the
theorem motivates the use of program transformation
systems as the automation engine underpinning Design
Maintenance.

The validation of the implementation step must verify
that the functionality is properly preserved and that the
resulting fragment, ultimately code, achieves the specified
performance properties. Performance properties are
typically emergent from larger components, and are thus

2 For us, architecture as a term better reflects those design
decisions that are difficult to change, because much of the
rest of the system depends on the architectural choices,
leading to massive revision if changed.
3 In fact, if we were willing to do this, we would only need
the specification, and could simply regenerate the code by
theorem proving methods after every specification change.

secondary properties, achieved by choosing a realization
that satisfies the desired performance characteristics. When
the choice is made, one is obliged to assert or prove that the
desired performance is achieved. The assertion or proof
that it does so can be recorded to avoid later need to re-
prove [2,3]. To the extent practical, performance properties
can be recorded with the transformation’s definition to
make evaluation more tractable. One can als o use goal-
directed performance specification decomposition as a
record.

3 Acquiring Designs

We have outlined a formal design representation
consisting of specification, realization, and rationale. Such
a notion for design enables answering hard questions about
the resulting software artifact: What does it do? How well
does it perform? How is it implemented? Why is the
implementation correct?

How can we acquire and use such designs to enhance
productivity? The “pure” method suggests constructing a
design from scratch. That is, from a specification find
realizations that are rational. A practical method suggests
these could be constructed for legacy software systems
using reverse engineering to approximate the original
design.

The pure approach can be imp lemented by manual
engineering, much as present day software is laboriously
hand-coded. Candidates for implementing specification
fragments are enumerated, evaluated, and one is chosen,
with the rationale for the choice made being encoded at the
same time. The pure approach can also be implemented by
using a program transformation system to select from a
database of predefined transformations. In practice, we
expect a mixed initiative in which transformation engines
propose and engineers select, or engineers enrich the
database of transformations with new transformations
during implementation.

Having a database of transformations would enable a
pattern-directed reverse engineering of code for which the
design does not exist [4]. Transforms matching some
fragment of the implementation would be proposed from
the database of existing transformations. Each proposed
transform implies a proposed specification being
implemented. The engineer would validate and select from
among the proposed transforms along with implied
specifications and this would be recorded. Alternatively,
the engineer would add new transforms as necessary to
enrich the database of transforms.

4 Continuous Design Maintenance
A simple model of design use would be big-bang

implementation and design consultation only for
understanding. The vision we propose is continuous design
revision by repeated incremental design cauterization and
implementation.

This process occurs in a cyclic fashion. In the first step,
an undesired property of the system is identified, either in
terms of function or performance. The difference between
the desired behavior and the actual is encoded as a formal
maintenance delta. This delta is used to determine the
parts of the design that cannot be retained. These parts are
removed, leaving a partially implemented design that is
consistent with the new desired behavior. Finally, the
partial design is extended to a complete design and
implementation. The theory for maintenance deltas and
incremental design revisions is provided in [2,3].

Productivity is obtained in numerous areas.
Specification in terms of changes is both natural and
succinct, and is separated from implementation issues.
Estimation of the impact of a proposed change can be
determined by tracing the downstream affect of the change
in terms of what must be removed. Summing previous
engineering costs on similar low-level specifications
corresponding to the removal points can approximate
estimated implementation costs. Actual removal can be
automated, and implementations can be augmented by
transformation systems whose power grows incrementally
over time as engineers add new DSLs or transformations.
Finally, multiple engineers can operate on the design
concurrently if design changes are treated as long-running
transactions.

5 DMS 1.0 Status
Design Maintenance is more than just a vision.

Semantic Designs (the author’s institution) is committed to
implementing this vision, recognizing that it is a long term
process requiring additional research in design capture.

The foundation for this implementation is DMS, a
scalable, industrial strength program transformation system
(www.semdesigns.com/Products/DMS/DMSToolkit).
DMS operates on multiple domains, both low level (C++,
COBOL, XML) and high level (SPECTRUM algebraic
specifications [7]). DMS is designed for large-scale
applications with millions of lines of code. DMS is
implemented in a parallel language, PARLANSE[11] to
provide as much possible computing power to the problem
of symbolic analysis and synthesis.

DMS has been deployed to carry out large-scale
automated tasks such as duplicate code detection [6],
translating JOVIAL to C, test coverage analysis and as an
embedded, re-targetable code generator for industrial
automation control.

6 Conclusion
This white paper has sketched a new model of software

engineering, based on continuous design maintenance of a
formal design consisting of specification, realization, and
rationale [2,3]. Industrial-strength technology for
implementing foundational components for our notion of
design has been constructed and fielded.

References
[1] G. Arango, I. Baxter, C. Pidgeon, P. Freeman, “TMM:
Software Maintenance by Transformation”, IEEE Software 3(3),
May 1986, pp. 27-39
[2] I. Baxter, “Transformational Maintenance by Reuse of Design
Histories” Ph.D. Thesis, Information and Computer Science
Department, University of California at Irvine, Nov. 1990, TR 90-
36.
[3] I. Baxter, “Design Maintenance Systems”, Comm. of the ACM
35(4), ACM, April 1992.
[4] I. Baxter and M. Mehlich, “Reverse Engineering is Reverse
Forward Engineering”. 4th Working Conference on Reverse
Engineering, IEEE, 1997.
[5] I. Baxter and C. Pidgeon, “Software Change Through Design
Maintenance”. Proc. International Conference on Software
Maintenance, IEEE, 1997.
[6] I. Baxter, et. al., “Clone Detection Using Abstract Syntax
Trees”, Proc. International Conference on Software Maintenance,
IEEE, 1998.
[7] M. Broy, et. al, "The Requirement and Design Specification
Language Spectrum, An Informal Introduction (V 1.0), Part 1 &
2", Technical University Munich, TUM -I9312, 1993.
[8] K. Jensen and G. Rozenberg (ed)., “High –Level Petri Nets”
Springer-Verlag 1991.
[9] A. Ledeczi, A. Bakay, M. Maroti, P. Volgyesi, G. Nordstrom,
J. Sprinkle, G. Karsai, “Composing Domain-Specific Design
Environments”, Computer, IEEE, November 2001.
[10] A. van Deursen, P. Klint, and J. Visser, “Domain-Specific
Languages: An Annotated Bibliography”, SIGPLAN Notices, vol.
35 no. 6 ACM, 2000.
[11] PARLANSE Reference Manual, Semantic Designs, 1998.
[12] J.A. Goguen and R.M Burstall, “Introducing Institutions,”
Logics of Programming Workshop, Lecture Notes in Computer
Science 164, Springer-Verlag, New York, 1984, pp. 221-225.

